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Structure and Energy of the 90± Partial Dislocation in Diamond: A Combined Ab Initio
and Elasticity Theory Analysis
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The core structure and stability of the 90± partial dislocation in diamond is studied within isotropic
elasticity theory and ab initio total energy calculations. The double-period reconstruction is found to be
more stable than the single-period reconstruction for a broad range of stress states. The analysis of the
ab initio results shows further that elasticity theory is valid for dislocation spacings as small as 10–20 Å,
thus allowing ab initio calculations to provide reliable parameters for continuum theory analysis.

PACS numbers: 61.72.Lk, 61.72.Bb, 71.15.Nc
The ability to predict the large scale mechanical proper-
ties of materials remains an outstanding challenge to ma-
terials physicists. Mechanical properties are linked to the
properties of the dislocations in a material. Discerning
the dislocation properties and their subsequent impact on
mechanical properties is complicated by the long-ranged
elastic and short-ranged contact forces between disloca-
tions. True prediction of mechanical properties, therefore,
is a formidable “many-body” problem.

Currently, computational resources have advanced to the
point where one can consider simulating the dynamics of
a large number of dislocations. Typical continuum dislo-
cation dynamics simulations [1] rely on elasticity theory
to describe interactions between dislocations. However, it
is well known that the elastic self-energy of a dislocation
(even in a finite medium) diverges. This divergence stems
from the failure of a continuum description when applied to
lengths smaller than the average distance between atoms.
Within simulations (and elasticity theory), this divergence
is removed through the introduction of a small scale cutoff,
defined to be the core radius of the dislocation rc [2]. The
isotropic continuum expression for the total energy per unit
length of an infinite edge dislocation may be written as

Etot � Ec 1
mb2

4p�1 2 n�
log

Rmax

rc
, (1)

where Ec is the dislocation core energy, m is the shear
modulus of the solid, n is Poisson’s ratio, b is the magni-
tude of the Burgers vector, and Rmax is a large scale cutoff.
In lieu of a better description of the dislocation core, Hirth
and Lothe [2] suggest that rc be chosen to minimize the
absolute value of Ec. In essence, the core radius is chosen
so that the second term on the right-hand side of Eq. (1)
suffices as a description of the total energy. This choice
provides the best possible representation of the total en-
ergy of the dislocation within isotropic elasticity theory,
assuming that Ec is independent of stress.
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Presently, it is possible to study the cores of disloca-
tions using ab initio calculations. From these studies one
expects to obtain (at a minimum) two types of informa-
tion. First, the stable core structure should be identified.
Second, one would like to extract a set of parameters
which can be used to describe the long-ranged interac-
tions and self-stresses of the dislocation. The present paper
demonstrates that one may use relatively small unit cells
and periodic boundary conditions to identify the stable core
structure, begin to explore the stress dependence of that
stable core structure, and extract parameters relevant to
larger scale computations.

Atomic scale studies of dislocation cores are compli-
cated by the long-ranged elastic interactions mentioned
above. In particular, the choice of boundary conditions
becomes an integral part of the problem being solved.
Two approaches are common in the literature. The first
approach is to study a “cluster” of atoms imposing the
displacements expected from elasticity theory at the
boundaries [3–7]. A second approach is to impose
periodic boundary conditions [8–10]. Each unit cell
considered, however, must have a net Burgers vector
equal to zero. Otherwise, the logarithmic divergence of
the energy apparent in Eq. (1) poses difficulties.

If one uses simple empirical potentials, it is possible to
calculate the total energies of collections of thousands or
even millions of atoms. Empirical techniques, however,
often suffer from the approximations one makes in con-
structing the potentials, and hence may be inadequate for
the study of some properties. Ab initio techniques provide
more reliable estimates of total energies, but one is forced
to address a much smaller number of atoms. This may lead
to unusual and extreme stress states, particularly in the cal-
culations performed using periodic boundary conditions.

The influence of these unusual stresses on the relative
energies of different dislocation core structures is contro-
versial. Bennetto and co-workers [9] recently proposed
a double-period (DP) reconstruction of the 90± partial in
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Si that is lower in energy than the previously assumed
single-period (SP) structure (see Fig. 1). Lehto and Öberg
[5] countered that the relative stability of the two struc-
tures is influenced by the periodic arrangement of disloca-
tions, and presented cluster calculations indicating that the
energy difference between the two structures is smaller
than that reported by Bennetto et al. and may even change
sign. Valladares et al. [11] reported that the free energy
difference between the two structures decreases with in-
creasing temperature, and argued that, at an elevated tem-
perature, both core structures should be present.

The availability of a large number of experimental
results and the technological importance of silicon (Si)
based devices have triggered efforts to understand the
structure and stability of dislocations and related kinks in
bulk Si [5,8,9,12–14]. Comparatively, much less attention
has been directed towards the study of dislocations in
diamond (though some initial work has been reported
[15,16]). Clearly, the properties of the dislocations in
diamond are at the heart of the extreme hardness of
diamond, and it is thus of significant fundamental interest
to understand the structure and stability of the dislocations
in diamond.

Dislocations in diamond are commonly thought to be
similar to those in Si. For example, it is assumed that
the 60± dislocations in diamond dissociate into 30± and
90± partials. This expectation is borne out by microscopy
experiments on thin films [17,18]. This Letter addresses
the structure and stability of the 90± partial in diamond.

Following the work of Bennetto et al. [9], the dif-
ference in energy between the DP and SP structures is
studied within a density functional theory-pseudopotential
approach [19,20]. The calculations are performed within
the local density approximation [21,22]. A standard
nonlocal pseudopotential [23,24] for carbon is employed,
and the plane-wave expansion of the wave functions is
performed with an energy cutoff of 36 Ry. The Brillouin
zone is sampled by four k points along the dislocation

(a) (b)

FIG. 1. Symbolic ball-and-stick representation of the 90± par-
tial in diamond: the (a) SP and (b) DP reconstructions. The
dotted lines indicate the positions of the dislocation cores.
line in the SP case and by the two equivalent k points
in the DP case. Test studies at larger cutoff and higher
numbers of k points show that differences of energy are
well converged with these running parameters.

Several basic unit cells are employed in the calculations.
The “small” cells are chosen to be identical to those de-
scribed in Ref. [9], containing 96 atoms in the SP structure
and 192 in the DP structure. By adopting the notations of
Ref. [5] to describe the unit cells (see Fig. 2), one finds for
the small cell that L � 4jaj and D � 2jbj, where �a, b�
are the unit vectors in the (110) plane of the perfect dia-
mond 12-atom orthorhombic cell [9]. In addition, larger
cells characterized by L � 6jaj or D � 3jbj are exam-
ined. (L and D will hereafter be expressed as integers,
with the unit vectors a and b understood.) Various val-
ues of w�L are considered, and T�L is chosen to be either
0 (the “dipolar” configuration) or 1�2 (the “quadrupolar”
configuration). (The strain introduced by the presence of
the dislocations is used to adjust the offset T , as proposed
in Ref. [5].) Within isotropic elasticity theory, the stresses
and their gradients depend sensitively on the choice of unit
cell parameters. Since the stress field from an edge dislo-
cation is inversion antisymmetric, the unit cells in which
the dislocation lattice is inversion symmetric will place no
net stress on the dislocations. Hence, for w�L � 1�2,
the net stress felt by each dislocation is identically zero.
In contrast, for w�L � 1�4, the shear stress at each core
may be large. (For diamond, it is demonstrated below that
the periodic cells employed here exert shear stresses of
10–20 GPa.)

Table I contains the results calculated from the eight
configurations considered here. In this and the follow-
ing table, energies refer to the most stable SP structure
[see Ref. [9] and Fig. 1(a)]. The small cell results for
the quadrupolar case �T�L � 1�2� agree with those of
Ref. [16], in which calculations indicate that the DP struc-
ture is more stable than the most stable SP structure by
�172 meV�Å.
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w

FIG. 2. Symbolic representation of the unit cell. The figure
contains two unit cells. L is the width of the unit cell, D is the
height, and w is the distance between dislocations in the unit
cell. The displacement T is also shown.
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TABLE I. Difference of energy DE � EDP 2 ESP (in
meV�Å) between the double-period and single-period structures
as a function of cell size and geometry. A negative number
indicates that the DP structure is more stable. The lengths L and
D are given in units of the underlying 12-atom orthorhombic
cell �a, b� unit vectors (see text). The stresses sxy , sxx , and
syy on a dislocation, in units of 1023m, are determined using
isotropic elasticity theory.

L D w�L sxy sxx syy DE

T�L � 0

4 2 1�2 0 0 0 2121
6 2 1�2 0 0 0 2128
6 2 1�3 6.69 20.63 1.88 2120
6 2 1�4 16.2 20.74 1.92 269, 2110a

4 3 1�2 0 0 0 2141

T�L � 1�2

4 2 1�2 0 0 0 2169
6 2 1�2 0 0 0 2198
6 2 1�3 27.7 0.63 21.88 2161

aFor this set of parameters, two different unit cells for the DP
structure are possible, depending on how the 5- and 7-membered
rings are aligned with respect to each other (see Fig. 1).

Table I reveals clearly that the energy difference between
the cores is dependent on the dislocation configurations.
For the dipolar case (i.e., T�L � 0), DE � EDP 2 ESP
decreases only slightly upon increasing L. However, for
T�L � 1�2, which corresponds to the quadrupolar struc-
ture suggested by Bigger et al. [8], the decrease in DE
jumps to �30 meV�Å. Table I also demonstrates the sen-
sitivity of the energy difference to the choice of w�L. For
a particular value of T�L, the configurations for which
DE has the smallest absolute value correspond to those
for which w�L fi 1�2, i.e., those which impose a net shear
stress on the dislocation. These stresses can be quite large;
for L � 6 and w�L � 1�3 in the quadrupolar configura-
tion, the shear stress sxy is determined to be 0.028m, or
almost 15 GPa. The diagonal stresses, sxx and syy , though
smaller than the shear stress by about an order of magni-
tude, are nonetheless significant and may also affect the
stable core structure.

These calculations suggest then that the energy differ-
ence between the two core structures is a sensitive func-
tion of the stress state. This leads to the possibility that
the stable core structure is, in fact, dependent on the ap-
plied stress. The implication is that the kink structures, and
hence the dislocation dynamics, may depend strongly on
the applied stress, even if the energy scales are not much
altered. If true, this observation is of significant impor-
tance to those desiring to model the mechanical properties
of materials from the atomic scale.

Arias and Joannopoulos [14] in their study of the
spontaneous annihilation of two screw dislocations in Si
extracted a core energy by calculating the elastic energy
using isotropic elasticity theory and comparing with
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ab initio results. They correctly noted that the summation
appearing in the expression for the elastic energy is simi-
lar to a Madelung sum, and hence must be treated with
caution. Bulatov has made similar observations [25]. The
summation is performed here by making use of analytical
results for tilt boundaries available in the literature.

The periodic arrangements considered here can be
thought of as a 1D stack of tilt boundaries. The total
elastic energy of an isolated tilt boundary can be cal-
culated explicitly [2]. Further, the stress field of a tilt
boundary is known to decay exponentially with distance
from the boundary. The total elastic energy per unit
cell is calculated as a sum of the self-energy of each tilt
boundary plus the elastic work performed in assembling
the tilt boundaries into the studied configuration. The
energy, when calculated in this fashion, converges very
rapidly. The elastic self-energy of a tilt boundary depends
on m and rc, and the work needed to construct the stack
depends directly on the shear modulus m.

Extraction of numerical values for m and rc is ac-
complished as follows. A number of ab initio calcula-
tions are performed and the total energies compiled. The
considered configurations (all are chosen to be SP struc-
tures) and the relevant elastic energies, corrected for the
presence of the stacking fault, are contained in Table II.
(The stacking fault energy is calculated to be 17 meV�Å2,
in good agreement with the experimental results of 17.4
and 18.1 6 2.5 meV�Å2 reported in Refs. [17,18]. The
stacking fault energy is subtracted from the total energy of
the unit cell, measured relative to bulk diamond, and the
results are reported in Table II as Eatom.)

TABLE II. Comparison of atomic scale results (for the single-
period structure) and isotropic elasticity theory analysis. Eatom is
the ab initio energy per unit length of the dislocation, corrected
for the stacking fault energy. Efitted is the same quantity calcu-
lated using elasticity theory and the fitted parameters. Lengths
are given in terms of the unit cell vectors �a, b� and energies are
in eV�Å.

L D T�L Eatom Efitted

w�L � 1�2

4 2 0 1.47 1.49
4 2 1�2 1.68 1.68
6 2 0 1.54 1.56
6 2 1�6 1.82 1.78
6 2 1�2 2.01 2.05
4 3 0 1.61 1.57

w�L � 1�3

6 2 0 1.54 1.52
6 2 1�2 1.92 1.90

w�L � 1�4

6 2 0 1.43 1.46
6 2 1�6 1.59 1.59
6 2 1�2 1.70 1.71
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The values of Eatom are fitted to the expression for elas-
tic energy discussed above, with m and rc as fitting pa-
rameters. [The elastic energy of a tilt boundary composed
of edge dislocations depends on m��1 2 n�, where n is
Poisson’s ratio. For simplicity, the experimental value for
n for diamond cubic carbon quoted in Hirth and Lothe
[2], 0.068, is used; however, the results should be consid-
ered as fits to the prefactor m��1 2 n� and not m alone.]
Table II lists these results as Efitted. The shear modulus
deduced from the fitting procedure is m � 545 6 20 GPa
[26], in good agreement with the experimental value of
536 GPa quoted in Hirth and Lothe [2].

The core radius deduced from the fit is rc � 0.41 6

0.04. Nandedkar and Narayan [6], using Tersoff poten-
tials and cylindrical boundary conditions, find rc � 3 Å
and Ec � 4.69 eV�Å. By contrast, the fitting procedure
repeated above, assuming rc � 3.0 Å and allowing for
nonzero Ec, yields Ec � 1.26 eV�Å. The precise origin
of the large difference in core energies is unknown.
Perhaps the difference stems from errors in the total
energy as described by Tersoff potentials. It is also
possible that the core energies obtained from the periodic
unit cells are influenced by the proximity of the nearby dis-
locations, though it seems unlikely to the present authors
that this could lead to energy differences of over 3 eV�Å.
Nonetheless, the value rc � 0.41 Å, about b�3.5, is
consistent with general expectations for the magnitudes of
core radii [2] and not far from the value rc � b�4 found by
Trinczek and Teichler [7] for the 90± partial dislocation in
Si and Ge.

While the use of anisotropic elasticity theory might
improve the overall fit, it is evident from the table that
simple isotropic elasticity theory does an excellent job
of describing the energetics of the considered arrange-
ment of dislocations. The largest discrepancy between
the fitted values and the ab initio calculations is about
0.04 eV�Å, which translates into an uncertainty of about
0.6 MPa in the stress required to bow a dislocation
of length 1 mm to its critical configuration. Thus, the
parameters m and rc obtained are certainly adequate for
inclusion into larger scale simulations.

In conclusion, this paper addresses the energetics and
core structure of the 90± partial dislocation in diamond. It
is demonstrated that the double-period core reconstruction
is the lowest energy state for a wide range of stresses. It is
also noted that the energy difference between the two core
structures decreases with increasing shear stress, suggest-
ing that the stable core structure may, in fact, be stress
dependent. Finally, it is shown that the energy changes
for a dislocation placed in various periodic environments
can be reproduced accurately using isotropic elasticity
theory, even in the limit of dislocation spacings as small
as �10 Å. One may thus use ab initio total energy tech-
niques on relatively small systems to extract with excellent
accuracy the parameters for larger scale simulations.
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